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Topic 1. Hypotheses testing.

Lecture 1.

Introduction.

So far we have estimated parameters of some distrib-
utions: � and �2 for the normal, N(�; �2); by �X and
s2; p (proportion) for the Bernoulli by p̂; estimating these
parameters provided an estimated distribution, when we
assumed that the shape of the distribution (e.g. normal)
was known.

In some cases we may not know the shape of the distrib-
ution but are anyway only interested in some moments,
say, the mean, and estimated it by �X:



We have learned about properties of estimators that are
useful in judging how well we are estimating: consistency,
unbiasedness, e¢ ciency. E.g. we know that estimating
the mean by sample average can give a consistent and
unbiased estimator that is also e¢ cient (BLUE).

Since the estimators are random we worked on estab-
lishing their distributions, called sampling distributions
and found that for some we can �nd exact distributions,
such as �2 for scaled s2 for random sample from normal
distribution. Distribution for some estimators can be ap-
proximated by known distributions, e.g. normal; under
suitable conditions �X or p̂ are asymptotically normally
distributed.

Recognizing that a point estimator such as �X cannot
give the parameter value precisely but only with some
margin of error, we constructed con�dence intervals to
re�ect that. Con�dence intervals tell us that we have 1-�
con�dence (say, 95%) of the population parameter being
within the bounds of the interval.



We may have speci�c questions of interest regarding
the estimated parameter.

Example.

A supplier usually sends chips with power usage rate of
90 milliamps, but sometimes does not have enough inven-
tory and substitutes chips with 120 milliamps power usage
rate; if you use these inferior chips you need to implement
expensive procedures to reduce overall power usage. You
receive a supply and wish to determine whether the chips
have power usage rate of 90 or 120. Your testing proce-
dure destroys the tested chips so you wish to limit that
expense as well (so, e.g. test a small sample of he chips
in the shipment).

Questions: Did the chips shipment come from the usual
batch with power rate of 90? How likely is it that the
chips came from the batch with the rate of 90?

Formal question in the form of a hypothesis.



We assume the actual power usage rate of the individual
chips in the shipment is random, and has a distribution
with mean either 90 or 120.

In the example two possibilities, or two "states of the
world". One is � = 90; the other � = 120:

x

y

Call one the null hypothesis: H0 : � = 90; the other
the alternative hypothesis H1 : � = 120:

Decision consists in picking one of the two; a reasonable
decision rule is needed.



Types of decision error.

decision

state of
the world

mean=90 mean=120

mean=90 correct
Type I
error

mean=120
Type II
error

correct

So type I error is when we reject the true null-hypothesis:
decide that mean is 120 when it is 90 as in Ho:

Type II error is when we incorrectly accept the null:
decide that 90 (H0) is right when it is not (120).

To make a decision we rely on sample information. For
example, we compute the sample mean, �X; and base our
decision on its value.

How is this done? by deciding on a critical or rejection
region bounded by, say, b and the rule:



If �X > b reject Ho in favor of H1:

Each decision rule is associated with possibility of errors.

Under some conditions we can �nd probabilities for type
I and II errors.

Computation of errors associated with various deci-
sion rules for the example.

Assume that the power rates are normally distributed
N(�; �2) with unknown mean � (either 90 or 120) and
�2 = 3600; so that st.deviation is 60. Take a sample of
size n = 25; then �X has distribution N(�; 144) (where
144 = 3600

25 ):

Candidate decision rule 1:

Take the mid-point between 90 and 120, 105 and decide
on H0 if �X < 105; H1 otherwise.



Then � = Pr(Type I error)

=Pr( �X > 105jN(90; 144)

= Pr(Z > 105�90
12 ) = Pr(Z > 1: 25) = :106;

� = Pr(Type II error)

=Pr( �X < 105jN(120; 144) = Pr(Z < 105�120
12 ) =

Pr(Z < �1: 25) = :106:

What happens if decision rule changes?

Decision rule 2:

Decide on H0 if �X < 110; H1 otherwise.

Then � = Pr(Type I error)

=Pr( �X > 110jN(90; 144) = Pr(Z > 110�90
12 )



= Pr(Z > 1: 666 7) = :0475;

� = Pr(Type II error)

=Pr( �X < 110jN(120; 144) = Pr(Z < 110�120
12 ) =

Pr(Z < �0:833 33) = :2;

so probability of Type I error, �; went down, but for Type
II error, �; went up.

Probability 1 � � is called the power of the test (the
probability of a correct rejection of the null).

decision

state of
the world

accept H0 reject Ho

Ho
correct,

Pr = 1� � Pr(T I error)=�

H1 Pr(T II error)=�
correct,
Pr = 1� �

There is a trade-o¤ between � and �:



Some other aspects of the problem have an e¤ect.

Both � and � decline with the following changes.

If the null and alternative are farther apart: e.g. H0 :
� = 90; and H1 : � = 150:

If the variance is smaller, e.g. �2 = 3000; rather than
3600.

If the sample size is larger, e.g. n = 50 instead of 25.

Decision rule.

How to choose a reasonable decision rule?

Type I and type II errors are usually costly, each with its
own cost. Suppose that we can �nd the trade-o¤ between
the two (e.g. in the form of relative price) of � and �:
Then if we could plot � against � we could �nd the point
of tangency that would minimize the cost of the error.



a

b

Usually this is not done. The problem is that as we shall
later see in a test of composite hypotheses (with numer-
ous alternatives) the value of � is not unique and depends
on which speci�c alternative is true, so that evaluating
the cost of type II error is not straightforward. This is
why the focus is on controlling �:

Decision rule is often based on choosing some small sig-
ni�cance level � (=Pr(type I error), such as .05, or .01.
Historically this had to do with statistical evaluation of
agricultural experiments for e¤ectiveness of innovations:
new seeds, fertilizes, etc. The idea was not to introduce a
new product unless the evidence for its e¤ectiveness was
very clear, so that type I error would be small. Similarly
for medical innovations. Or for new economic theories.



Since there is no symmetry between the null and alter-
native it is important to give some thought to setting up
the hypothesis testing problem.

The hypotheses that we considered in the example are
called simple: a point null against a point alternative;
in this case both distributions (for H0 and H1) are com-
pletely speci�ed.

Composite hypotheses.

Now we specify a whole range of values for the alterna-
tive.

Example Ho : � = 90; but now the alternative is H1 :
� > 90:

Generally,

Ho : � = a; H1 : � > a



or

Ho : � = a; H1 : � < a

is called a one-sided test.

Sometimes the null H0 in a one-sided test is represented
by � or �; e.g. H0 : � � a versus H1 : � > a: This
makes sense because if the null � = a is rejected in favor
of � > a; then any � < a is automatically rejected as
well.

We shall also consider two-sided tests:

Ho : � = a; H1 : � 6= a:

Tests of a population mean in a normal population
(population variance known).

Let X be N
�
�; �2

�
where �2 is known. The hypothesis

is about the population mean, �; H0 : � = a:



Any evidence about the value of the parameter � comes
from sample data, and we usually use the sample mean
�X (random) as an estimator of �: Using the sampling
distribution of the sample mean we can standardize and
obtain the corresponding standard normal N(0; 1) value

Z =
�X � �r
�2
n

:

Notice, that given the null hypothesis H0 : � = a; we
can actually compute the value of the statistic Z for the
null distribution.

For any �� level of the test, the critical rejection region
can be found by �nding the corresponding critical value
in the normal table, e.g. Z:025 = 1:96:

Then comparing the computed value of the statistic with
the critical we can see whether it falls into the rejection
region.

Example.



For the variable X distributed N(�; �2); where �2 =
3600 test the null hypothesis

Ho : � = 90;

against the alternative

H1 : � > 90

based on a sample of size n = 25 that provided a sample
mean of �X = 105:

The distribution of �X underH0 isN(�;
�2

n ); hereN(90; 144)
where the sampling variance of �X is 144=360025 :

Consider a test at 5% signi�cance level, or � = :05:

Then the decision rule is reject if
�X��q
�2
n

> Z� where

Pr(Z > Z�) = �: So we need to �nd the critical value
Z� for � = :05; it is Z:05 = 1:65:



Now compute the value of the test statistic, Z =
�X��q
�2
n

: Here it is 105�9012 = 1: 25:

Decision: since it is not larger than the critical value we
do not reject H0:

One-sided tests.

To summarize.

To test Ho : � = a; H1 : � > a

at signi�cance level �

(a) compute the test statistic: Z =
�X��q
�2
n

;

(b) �nd the critical value: Z�;

(c) compare the value of Z and Za; if Z >Za; reject
H0; if not, do not reject.



Example (continued).

Test with the same information the hypotheses Ho : � =
120; H1 : � < 120:

To test Ho : � = a; H1 : � < a

at signi�cance level � = :1

(a) compute the test statistic: Z =
�X��q
�2
n

; here 105�12012 =

�1: 25

(b) �nd the critical value: -Z�; here -Z� = �1:29

(c) compare the value of Z and -Za; if Z <-Za; reject
H0; if not, do not reject. Here -1.25>-1.29, so do not
reject (although it is close).

Would the null have been rejected at 5%? at 25%?



Check.

Would with the same sample information a one-sided test
of H0 : � = 90 versus H1 : � < 90 have made sense?
Explain.

Two-sided tests.

To test Ho : � = a; H1 : � 6= a

at signi�cance level �

(a) compute the test statistic: Z =
�X��q
�2
n

:

(b) �nd the critical value: Z�=2:

(c) compare the computed value of jZj with Z�=2; if
jZj>Z�=2 reject H0:

Example.



The average grade in a class of 100 was 67; assuming
that the grades are normally distributed with population
variance of 225 is it credible to say that the population
mean is 70? Perform a test at 5% signi�cance level.

H0 : � = 70;H1 : � 6= 70:

Test statistic
�X��q
�2
n

= 67�70q
225
100

= �2:0

Critical value is Z:025 = 1:96:

The null is rejected.

What would happen in a one-sided test at � = :05?

Explain.

Relation to con�dence intervals.



We show that a 1�� con�dence interval for the popula-
tion parameter � is such that any null specifying � within
that interval cannot be rejected at � level of signi�cance.

Example:

(a) H0 : � = 0 in a normal distribution with known
variance �2 = 4; then the sampling distribution of the
sample mean, �X; under H0 is N(0;

4
n): If � = :05 and

in a sample of 100 we observe �X = :1:

The value of the test statistic is

Z =
�X��q
�2
n

= :1q
4
100

= 0:5:

The critical value is 1.96; we cannot reject H0:

(b) The 95% CI for � is ( �X�Z�=2
r
�2
n ;

�X+Z�=2

r
�2
n ):



Here

(:1� 1:96
s
4

100
; :1 + 1:96

s
4

100
)

= ( �0:292 ; 0:492 ):

We see that � = 0 is inside.

Theorem. (i) For any value �0 that is inside the 1-�
(two-sided) CI the null hypothesis H0 : � = �0 cannot
be rejected against a two-sided alternative H1 : � 6= �0
at � level of signi�cance. (ii) Any value �0 that is not
rejected at level � is inside the (1��) con�dence interval.

Proof.

(i) If �0 is inside the CI, then �0 is such that

�X � Z�=2

s
�2

n
< �0 < �X + Z�=2

s
�2

n
:

Then

������ �X��0q
�2
n

������ < Z�=2; so H0 cannot be rejected for that
�0:



(ii) If H0 : � = �0 is not rejected vs H1 : � 6= �0 then

we had

������ �X��0q
�2
n

������ < Z�=2; thus

�X � Z�=2

s
�2

n
< �0 < �X + Z�=2

s
�2

n

and �0 is inside the (1� �)CI:�

The 1-� CI coincides with the set of values for which the
null hypothesis cannot be rejected at signi�cance level �:

The same is true for one-sided CI.

This implies that if you know how to contsruct CI�s you
can test hypotheses, if you know how to test a hypothesis
you can construct a con�dence interval.

Tests of a mean of a normal distribution (population
variance not known).



Similarly, to construction of CI for this case the popula-
tion variance is estimated by sample variance, s2; stan-
dardizing we get the t�ratio= �X��

s=
p
n
(instead of

�X��
�=
p
n
=

Z; st. normal); the distribution of t�ratio is Student�s
t with n � 1 d.f.. The testing strategy is the same as
with known variance, just using estimated variance and
the critical values from the t�distribution.

So, for example for a one sided test.

To test Ho : � = a; H1 : � < a

at signi�cance level �

(a) compute the test statistic, t�ratio: t = �X��q
s2
n

;

(b) �nd the critical value: -tn�1;�;

(c) compare the value of statistic t and -tn�1;a; if t <-
tn�1;a; reject H0; if not, do not reject.



Example.

A supplier usually sends chips with power usage rate of 90
milliamps, but sometimes does not have enough inventory
and substitutes chips with a higher power usage rate.
Assume that the power usage in the shipment is normally
distributed. In a random sample of size n = 25 the
sample mean was �X = 105; the sample variance s2 =
3000: Test whether the expected power usage rate in the
shipment is above 90.

What is given?

X � N(�; �2); so sampling distribution of �X in sample

of size n is N(�; �
2

n );

�2 is estimated by s2:

Set up the hypotheses H0; H1:

H0 : � = 90 (or � � 90); H1 :� > 90:



For decision rule select �; level of the test.

Say, � = :05:

Test statistic: t = 105�90q
3000
25

= 1: 369:

Critical value t24;:05 = 1:711:

Compare: t� ratio < t24:05 so cannot reject H0:

If tested at � =.1 level, the critical value is t24;:1 =
1:318; so at this level we reject.

Probability value; prob-value, p-value of a test sta-
tistic.

Since � is chosen fairly arbitrarily and we see that one
gets a "weak" rejection or acceptance sometimes, mean-
ing that the statistic is very close to a critical value, while
sometimes the result is "strong", e.g. we reject at 10%



but could reject even at 1% one may ask, how can this
strength of rejection or acceptance be captured.

A way to do this is to compute p-value of the sample
statistic. Call the statistic (t � ratio or some other),
Ŝ (e.g., t); it has a known distribution (e.g., Student�s
td:f:); so that Pr(S > Ŝ) can be found.

De�nition. For a one-sided alternative (in H1 ">")
p�value= Pr(S > Ŝ) where probability is found ac-
cording to the (known) distribution of the test statis-
tic under H0. For a two-sided alternative (6= in H1)
p� value = 2Pr(S > Ŝ):

P�value is the probability of getting values of the statis-
tic more extreme (in the direction of the alternative)
than the value actually observed.

In the example above, assume for simplicity that �2 is
known and equals 3000. Then we would have the test
statistic distributed as N(�; �

2

n ); for our example under



H0 the distribution is N(90;
3000
25 ): The value of the sta-

tistic 105�90q
3000
25

was 1:369: What is the p-value?

By de�nition p � value = Pr(Z > 1:369) = 1 �
:9147 = 0:085 3:

What does the p-value tell us? At what levels of signi�-
cance can we reject the null?

We can call this p�value �0; in the example if �0 were the
level of the test, then we would have that 1:369 = Z�0;

the critical value for �0 = 0:085 3: So we would be just
indi¤erent whether to reject or accept. But if we had �
such that critical Za < 1:39; we would reject.

When would Z� be less than Z�0? When � > �
0:

So in the example it would require the level to be higher
than 0:085 3 to be able to reject. So we reject for all
a > 0:085 3; and do not reject for all � < 0:085 3:



Speci�cally, in a test at 5% (� = :05) we would not
reject, but for the test at 10% (� = :1) level we would
reject the null.

Tests of a population proportion.

Ho : p = p0 against (usually) a one-sided, or a two-sided
alternative.

Exact distribution. If sample size is small the sampling
distribution of the sample proportion under the null hy-
pothesis can be constructed exactly, since the sample
proportion, p̂ = k

n; is distributed as
1
n times a bino-

mial random variable k (with known p0 under the null-
hypothesis).

So you could do this test exactly in a small sample: use
the binomial probabilities to �nd critical values for signif-
icance level �. Even for larger samples tables of critical
values are constructed, or calculations can be performed
by special programs to get the exact distribution. This is



particularly important when the normal distribution does
not provide a good approximation: even when sample
size is large if the p is extreme: small or close to 1, np;
or n (1� p) may be very small ("a rule-of-thumb": if
np(1 � p) < 5; the normal is a poor approximation to
binomial. in that case use the exact distribution).

Example.

Claim: the probability, p; of a long slowdown in the metro
in rush-hour is at most 0.2. Taking the metro a student
was late for three of her 6 morning exams in one year
(since she avoids taking morning classes this was her only
available info - so small sample). She observes p̂ = 3

6 =

0:5: She does not believe the claim and wants to test at
10% signi�cance level.

Formulate: H0 : p � :2;H1 : p > :2:

The probability mass function for p̂ under the null is (p̂
takes values: 06;

1
6;
2
6;
3
6;
4
6;
5
6;
6
6) :



Pr(k6) = Pr(k out of 6 in binomial)

= C6kp
k(1� p)6�k = 6!

k!(6�k)!p
k(1� p)6�k for p = :2:

proportion of slowdowns in 6 tries prob.
0 0:26
1
6 0:39
2
6 0:25
3
6 0:08
4
6 0:02
5
6 :002
1 � 0

The issue of p-value for a discrete distribution.

For a continuous distribution the p-value (e.g. in a one-
sided case) is Pr(� > ��) = Pr(� � ��); where �� is
the observed value of the statistic � (could be standard
normal, or td:f:):

The meaning of a p�value is to say if the null is true,
how plausible is the value observed?



Typically the p-value for the discrete distribution is com-
puted as Pr(� � ��):

What is the p-value for 36? Pr
�
p � 3

6

�
= :102; so based

on this the H0 would not be rejected at � = :1:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

x

y

Large sample size.

In a large sample the normal approximation can be used.

Example.

"The grandmother hypothesis: rocking a baby stops cry-
ing".



How to set up the test? What are the null and alterna-
tive?

If rocking has no e¤ect on crying then we may assume
that a baby stops crying randomly regardless of being
rocked and will stop within some interval with proba-
bility .5 whether it is rocked or not. The grandmother
thinks that a rocked baby will stop crying with a higher
probability.

This set-up implies a one-sided alternative:

H0 : p = :5; H1 : p > :5:

To test we need to collect some sample info, compute
the value of a test statistic and consider the sampling
distribution of the test statistic. Here, this would be the
sample proportion, p̂:

Suppose that a sample of n =126 crying babies were
rocked for a while and k = 70 of those stopped crying
within a speci�ed period.



Then p̂ = 79
126 = 0:627:

The sampling distribution under the null is approximately
normal; its mean is p =.5, var (p̂) = p(1�p)

n = :5�:5
126 =

:00198; so N(:5; :002): The value of the test statistic is
(standardized)

Z = :627�:5p
:00198

= 2: 85

Set the level of the test at � = :01: The critical value
Z:01 = 2:33:

We reject the null hypothesis in favor of the "grand-
mother hypothesis".

Suppose that you were just interested in whether there
is some e¤ect of rocking on a crying baby, regardless
of whether it was to stop the baby from crying, or to
increase the probability of crying. Then you would specify
a two-sided alternative: H0 : p = :5 (no e¤ect) against
H1 : p 6= :5 (some e¤ect, either positive, or negative).



If you wished to test at the same signi�cance level, all
that would change is the critical value: for � = :01; the
critical value now is Z�=2 = Z:005 = 2:57: (note: this is
bigger than Z�; so at the same level it is harder to reject
a two-sided hypothesis).

Probability of Type II error.

Recall that probability of Type I error=� = the level of
the test.

Probability of Type II error=� = Pr(H0 not rejectedjH1
true).

� depends on the speci�c alternative and changes as a
function of the true alternative.

Exercise: compute � for test of a mean.

H0 : � = 0 in a normal distribution with known variance
�2 = 4:



H1 : � > 0:

The sampling distribution of the sample mean, �X; under
H0 is N(0;

4
n):

Set � = :05:

In a sample of 100 we observe �X = :1 then the stan-
dardized value of the statistic is Z =

�X��q
�2
n

= :1q
4
100

=

0:5:

Compare to the critical value, Z:05 = 1:645:

H0 cannot be rejected on this evidence: 0:5 < 1:645.

In fact, for any �X � 1:645 �
q

4
100 = 0:329 the null will

not be rejected.

Suppose however that the alternative holds. As an exer-
cise compute � and power, 1��; for various alternatives.



Consider � = :02; :08; :16; :32; :64; 1:0

For any alternative � �(�) = Pr

0@Z < :392��q
4
100

1A :

We get �(:02) = Pr

0@Z < :392�:02q
4
100

1A = Pr (Z < 1:86) =
:9686;

1�� = :0314: So for an alternative close to the null the
power is low (it is di¢ cult to distinguish).

But � (1:0) = Pr

0@Z < :392�1:0q
4
100

1A = Pr (Z < �3:04)

is close to zero. Power close to 1.

Compute the other values and graph to get a feel for how
� and the power of the test change.

In a two-sided test �(�) = Pr(jZj < Z�=2):



Computing � for test of a proportion.

It is more di¢ cult to do the computation for this case
because under the alternative both the mean and variance
change as the proportion distribution is approximated by

N

�
p;
p(1�p)
n

�
for the true p that di¤ers depending on

the (true) alternative value for p:

Example: the"grandmother hypothesis" test.

In the example probability of type II error is � = Pr(test
statistic Z < ZajH1 true).

Again, � is not constant over all possible alternatives
where any of p > :5 could hold: � is a function of p;
�(p):

Compute � for some speci�c alternatives. Set level at
.01 so that Z� = 2:33:



This critical value implies that if p̂ < 2:33
q
:5�:5
126 + :5 =

0:603 79; we do not reject the H0:

For p = :55 we can write �(:55) = Pr(test statis-
tic ẐjH0 < Zajp = :55) = Pr (p̂ < :604jp = :55) =
Pr(Z < :604�:55q

:55�:45
126

)

= Pr(Z < 1: 218 4) = :88; 1� � = :12:

For alternative p = :6 similarly

� (:6) = Pr(Z < :887) = :81; power =.19;

For alternative p = :65 similarly

� (:65) = Pr(Z < �1:08) = :14; power =.86;

For alternative p = :7 similarly

� (:7) = Pr(Z < �2: 347) = :009; power =.991.



So there is more power against further alternatives; power
increases non-linearly from � to 1.

true p power
:51 :05
:55 :113
:6 :19
:65 :84
:7 :991
:75 1

0.5 0.6 0.7 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p

power

Tests of a di¤erence in means



Matched pairs.

Example: Do students who rewrite the exam improve
their grades on average?

In a sample of 8 who retook the exam:

row 1: make-up grade/50=X1; row 2 MT/50=X2; row
3 the di¤erence: X1 �X2

30:5 30 43 24:5 28:5 35 33:5 35:5
30:0 27:5 24:5 37 32 33 25:5 31
0:5 2:5 18:5 �12:5 �3:5 2 8 4:5

H0 : �1 � �2 = 0; H1 : �1 � �2 > 0:

Assume �rst that the marks are normally distributed (un-
realistic here).

Then X1 �X2 is distributed as N(�1 � �2; �2X1�X2):



This is similar to testing the mean in a normal dis-
tribution, with population variance unknown.

Estimate mean by �X1 � �X2 =
1
820 = 2: 5; variance by

s2 = 69:438:

Value of statistic is t = 2:5q
69:438
8

= 0:848 58; it is dis-

tributed as t7; for � = :1 the critical value is 1.415, the
statistic is below this and we cannot reject H0:

Sign test

There is another way to test this that does not rely on any
assumption about the distribution; it is useful because
here normality is not very realistic.

The sign test is a non-parametric test of symmetry;
it tests the median rather than the mean. So now the
null-hypothesis is that a student who rewrites the test is
as likely to improve the mark as to see it go down.



To conduct the test record the signs of the di¤erences:
+;+;+;�;�;+;+;+: Under the null hypothesis what
is the probability of getting 6 or more "+"�s out of 8
observations? Under the null-hypothesis probability of
a + is 0.5. and we can use the binomial to calculate
the probability Pr(k � 6) = Pr(k = 6) + Pr(k =

7) + Pr(k = 8) =
�
8!
6!2! +

8!
7!1! + 1

�
:58 = 0:144 53:

This is the prob-value of the sign test. So here as well
H0 cannot b rejected at :1 level.)

Di¤erence between means: normal distributions, known
variances, independent samples.

Example. To �nd out whether a particular mineral in the
soil improves yields it was added to the soil in one orchard
and the yield of n1 =100 apple tress there was compared
to that of n2 =150 apple trees in an orchard where the
soil did not have the same level of mineral. Assume that
yield of a tree in orchard 1 is X distributed normally
N(�1; �

2
1); in orchard 2 Y is distributed as N(�2; �

2
2);



with known �21 = 400;�22 = 625: Suppose that �X =

110; �Y = 100:

H0 : �1 � �2 = 0; H1 : �1 � �2 > 0:

Consider di¤erence in sample means, derive the sampling
distribution:

�X � �Y is normal; E( �X � �Y ) = �1 � �2;

var( �X � �Y ) = var �X + var �Y =
�21
n1
+
�22
n2

(recall that cov( �X1; �X2) = 0 since the samples are in-
dependent).

�X � �Y is N(�1 � �2;
�21
n1
+
�22
n2
)

The test statistic then is standardized (since the variances
are known it is N(0; 1)):



Z =
�X� �Y�0r
�2
1
n1
+
�2
2
n2

= (substituting the numbers)= 10q
400
100+

625
150

=

3:5:

To test consider either (a) given a = :01; or (b) compute
p� value:

For (a) the critical value: Z:01 = 2:33: H0 is rejected.

For (b) p�value = Pr(Z > 3:5) = 1� :998 = 0:002 :
So we see that we would reject even at .005 level (.5%).

Two means, normal distributions, unknown equal
variances, independent samples.

For the same example change the conditions: suppose
that the variances are not known but what is known that
they are actually equal.

How will this di¤er?



We have X distributed normally N(�1; �
2); in orchard

2 Y is distributed as N(�2; �
2); but �2 is not known.

Then the sampling distribution of the di¤erence in sample
means �X � �Y is still N(�1 � �2; �

2

n1
+ �2

n2
) or N(�1 �

�2;
�2(n1+n2)
n1n2

); but we need to estimate �2:

Di¤erent estimators are possible. One could just ignore
one of the samples and estimate by s21 from, say, the �rst
sample. But that ignores the information about variance
in the second sample. What is usually done is a pooled
estimator of �2 that uses both samples:

s2pooled =
1

n1+n2�2
h
�
n1
i=1(Xi � �X)2 +�

n2
i=1(Yi � �Y )2

i
or by using the estimated variances in each sample:

= 1
n1+n2�2

h
(n1 � 1)s21 + (n2 � 1)s22

i
:

Suppose all the numbers are as in the example above, but
now s21 = 400; s

2
2 = 625:



The standardized statistic is

t =
�X� �Y�0r

1
n1+n2�2

[(n1�1)s21+(n2�1)s
2
2]
(n1+n2)
n1n2

; substituting

numbers

10q
1
248(99�400+149�625)

250
100�150

= 3: 348 3

Because we had to estimate the variance this has a t�distribution
with n1 + n2 � 2 d.f. (-2 re�ecting the fact that now
two parameters - the two means - had to be estimated).

In the example the d.f. is large enough (248) that the
critical values are similar to those for standard normal.

Two means, normal distributions, unknown and un-
equal variances, independent samples.

The sampling distribution of the di¤erence in means is

N(�1 � �2;
�21
n1
+

�22
n2
): Now we have no choice but to



estimate �21 by s
2
1 and �

2
2 by s

2
2 separately (cannot pool

the variances).

So test statistic is

t =
�X� �Yr
s2
1
n1
+
s2
2
n2

; numerically = 10q
400
100+

625
150

= 3:5:

The distribution of this statistic is more complicated: it is
td:f:; but d:f: follow a more elaborate formula if sample
sizes di¤er:

d:f: =

�
s21
n1
+
s22
n2

�2
�
s2
1
n1

�2
=(n1�1)+

�
s2
2
n2

�2
=(n2�1)

:

If n1 = n2 this simpli�es to (n� 1)
(s21+s

2
2)
2

(s21)
2
+(s22)

2:



So in the example: d:f: =

�
400
100+

625
150

�2�
400
100

�2
=99+

�
625
150

�2
=149

=

239: 79: We note that this is a fractional number (it is
possible to have t with fractional d.f.); to �nd a criti-
cal value in the table one can take an intermediate value
between the two closest integers.

Tests of variances in normal populations

Example: A dairy processing company claims that the
variance of the amount of fat in the whole milk processed
by the company is

no more than 0.25. You suspect this is wrong and �nd
that a random sample of 41 milk containers has a variance
of 0.27. At � = 0.05, is there enough evidence to reject
the company�s claim?

Assume the population is normally distributed.

Consider X normally distributed: N
�
�; �2

�
:



The null-hypothesis, H0 : �2 = �20:

Here,

H0 : �
2 = :25;

Alternatives: two-sided H1 : �2 6= �20; or one-sided,
H1 : �

2 > �20 (or H1 : �
2 < �20):

Here this is

H1 : �
2 6= :25 or a one-sided H1 : �2 > :25:

Which makes more sense? Depends on the interpretation
(here one-sided makes sense, that is a higher variability
than claimed).

The statistic (n�1)s2
�2

has a known distribution (under
normality); it is �2n�1:

Here, �240: The value of the statistic
40�:27
:25 = 43: 2:



For � = :05 the critical value is 55.758.

So H0 cannot be rejected.

What can you say about the prob-value of this statistic?
(It could be computed, of course, but evaluate without
further computation).

P-value >.05.

What would be the conclusion for the two-sided test at
� = :1?

Test of equality of variances in normal populations.

Suppose that we consider two independent random sam-
ples: fX1; :::; Xn1g from N

�
�1; �

2
1

�
and fY1; :::; Yn2g

from N(�2; �
2
2):

The null is H0 : �21 = �
2
2 = �

2; the alternative could be
one-sided or two-sided.



We know that (n�1)s
2

�2
is distributed as �2n�1: This holds

for each sample; under H0 the denominator is the same.

Then
s21
s22
has the distribution

�2n1�1
=(n1�1)

�2n2�1
=(n2�1)

; where the dis-

tribution in the numerator and denominator are indepen-
dent (since came from independent samples). The ratio
s21
s22
is called the F�ratio and the distribution is known; it

is Fn1�1;n2�1 - F-distribution Fd:f:1;d:f:2 with degrees of
freedom d:f:1 called degrees of freedom of the numerator
and d:f:2 - degrees of freedom of the denominator.

Example. We tested di¤erence in means for two normal
populations under the assumption that the variances were
equal. We can now test how realistic that assumption
was. In a sample of size n1 = 100 we had s21 = 400; in
a sample from another distribution n2 = 150; s22 = 625:

H0 : �
2
1 = �

2
2: Select a level of signi�cance � = :05:



Consider
s22
s21
: (This ratio because the tables of F provide

upper tail values, so we use the number >1 for conve-
nience).

The value of the statistic is F = 625
400 = 1: 562 5: We

need the critical 5% value for 150,100 df. We can obtain
it by interpolating between 1.34 (for 100; 100 d.f.) and
1.39 (for 200; 100 d.f.) since the table does not list those
degrees of freedom. Note that this is from a table on the
web

http://home.comcast.net/~sharov/PopEcol/tables/f005.html

The table in SBE lists only up to 20 d.f. in the numerator.
We reject the null of equality of variances.

Di¤erence between proportions

Example.



In 1970 a poll of university students in the US asked
whether they believed that social change could be achieved
by peaceful means. Out of 300 students age 18 and un-
der 50% agreed, out of 300 students age 24 and older
69% agreed. Test whether there is no di¤erence between
the beliefs of the two groups.

H0 : p1 � p2 = 0; H1 : p1 � p2 6= 0:

The sampling distribution of the di¤erence in proportions
is p̂1 � p̂2 is approximately normal with mean

E (p̂1 � p̂2) = p1 � p2; var (p̂1 � p̂2) = var (p̂1) +

var (p̂2) =
p1(1�p1)

n1
+
p2(1�p2)

n2

(covariance is zero).

Distribution of p̂1�p̂2 is approximatelyN(p1�p2;
p1(1�p1)

n1
+

p2(1�p2)
n2

):

Then the standardized test statistic is



Z =
(p̂1�p̂2)�(p1�p2)r
p̂1(1�p̂1)

n1
+
p̂2(1�p̂2)

n2

: (this is the general form of the

statistic for testing di¤erences p1�p2; not only that they
are zero).

Under the null of equality p1 = p2 = p; so the distribu-
tion under this null is N(0; p(1�p)n1n2

(n1 + n2))

Then the standardized test statistic is

Z =
(p̂1�p̂2)r

p̂(1�p̂)
n1n2

(n1+n2)

: The denominator can be estimated

by substituting (pooled) p̂pooled =
p̂1n1+p̂2n2
n1+n2

:

In the example: p̂pooled =
:5�300+:69�300

600 = 0:595 ;

Z = :19q
:595(1�:595)
300�300 600

= 4: 740 4

H0 is rejected at � = :01:



A few problems.

1. In a sample of 400 adults and 600 teenagers 100 adults
and 300 teenagers liked a TV program. Construct a 95%
CI for the di¤erence in proportions.

The sampling distribution of the di¤erence is N(p1 �
p2;

p1(1�p1)
n1

+
p2(1�p2)

n2
);

The variance is estimated by p̂1(1�p̂1)
n1

+
p̂2(1�p̂2)

n2
=

:25�:75
400 + :5�:5

600 = :000885

p
8: 854 2� 10�4 =

p
:000885 = :02974 9 � :03

CI is (p̂1� p̂2�Z� � :03; p̂1� p̂2+Z� � :03) = (:25�
:5 � 1:96 � :03; :25 � :5 + 1:96 � :03) = (�0:308 8 ;
�0:191 2) :



Can we reject H0 of no di¤erence at 5% level based on
this CI?

H0 : p1 � p2 = 0;H1 : p1 � p2 6= 0

Yes.

For a one-sided alternative?

H1 : p1 � p2 > 0

Only at .025 based on the CI.

What is the p-value here for the di¤erence in proportions?

Pr(Z > :25
:03) � 0; would reject H0 strongly at any rea-

sonable level.

2. (from an old exam) Suppose that in constructing
a pilot ejection mechanism the manufacturer bases the



process on the assumption that the combined weight of
the pilot and ejector seat is distributed normally with a
mean of 130 kg and standard deviation of 25 kg. There is
a view that the mean is actually lower (which if true could
lead to a cost reduction in the manufacturing process).

(4)(a) State the hypotheses. Given a sample of 64 ob-
servations with average of 124 kg test the hypothesis at
5% level.

H0 : � = 130;H1 : � < 130:

Test statistic Z = 124�130
25=8

= �1:92: The critical value
at .05 is -1.65. H0 is rejected.

(5) (b) Find the prob-value for the sample average under
the conditions in (a). Based on the prob-value test the
hypothesis at 1%.

Pr( �X < 124) = Pr(Z < �1:92) = :027: Since .01<.027
the null cannot be rejected at 1%.



(5) (c) Suppose that in reality the mean is 125 kg. Find
the probability of Type II error for � = :01 and the power
of the test.

So in reality �X is distributed as N(125; 25
2

64 ); so E(test

statistic)=E(
�X�130
25=8

) = 125�130
25=8

= �1: 6; , and var(test
statistic)=1 (did not change); so (test statistic+1.6) is
N(0; 1):

� = Pr(Type II error)= Pr(test statistic>�2:33j� =
125) = Pr(Z > �2:33 + 1:6) = Pr(Z > �0:73) =
:767; power is 1-� = :233:

(3) (d) Indicate how one could increase the power of the
test.

Increase �: Increase sample size.

An additional question. Suppose that for safety reasons
the combined weight of pilot and seat would need to be



no greater than 180 with probability 99%, otherwise the
mechanism design is declared unsafe.

An inspector claims that the design is unsafe and the
manufacturer disputes this claim.

It is known that the variance for the pilot�s weight is
�2p = 600; for the weight of the seat �

2
s = 25; measure-

ment were done independently for 100 pilots and 20 seats.
What would the observed combined weight �Xp+ �Xs have
to be for the manufacturer to be able to refute the in-
spector�s claim at � = :01?

This requires several steps.

1. First, the question is what would have to be the largest
true mean weight � = �p + �s that would not fail the
safety constraint?

In other words for which �

Pr
�
X � 180j in N

�
�; �2p+s

��
< :01



holds?

Note that �2p+s = �
2
p + �

2
s = 625:

This is Pr
�
Z > 180��

25

�
< :01:

Then 180��25 > 2:33; � < 180� 25 � 2:33 = 121: 75:

2. Now the inspector�s claim is H0 : � � 121:75 and the
manufacturer wants to reject in favor ofH1 : � < 121:75
at � = :01:

Combined weight �X = �Xp+ �Xs is distributed asN
�
�;
�2p
np
+
�2s
ns

�
;

or

�2p
np
+
�2s
ns
= 600
100 +

25
20 = 7: 25;

Then we need �X for which Pr
�
Z <

�X�121:75p
7:25

�
< :01;



or
�X�121:75p

7:25
< �2:33: Then �X < 121:75 � 2:33 �

p
7:25 = 115: 48:

3. In a random sample of 100 respondents one third said
that they participate in winter sports.

(5) (a) Construct a 98% two-sided con�dence interval for
the proportion of population that participate in winter
sports.

p̂ = :33; p̂ is approximately normally distributed with
mean p and variance p(1�p)n ; then Pr(jp̂� pj < E) =

Pr(jZj < Eq
p(1�p)
n

) = :98 = 1� �; Eq
p(1�p)
n

= Z�=2 =

Z:01 = 2:33 and E = 2:33 �
q
:33�:67
100 = 0:109 56

:33� :11 < p < :33 + :11;

:22 < p < :44:

(5) (b) State what kinds of hypotheses can be tested at
2% level and which at 1% level using the result in (a)?
Explain how acceptance/rejection would be decided.



At 2% any two-sided hypotheses H0 : p = p0; H1 : p 6=
p0: If p0 is inside CI in (a), H0 is not rejected, if outside,
H0 is rejected.

At 1% one can test H0 : p = p0; against (i) H1 : p > p0
or (ii) H1 : p < p0. If p0 is below the lower bound, H0
is rejected in favor of (ii), if above upper, in favour of (i),
otherwise, H0 is not rejected.

(5) (c) Suppose that in another random sample of 120
40% of respondents said that they participate in sports in
the summer. At 5% level test that there is no di¤erence
in the proportion of people who participate in sports in
the winter and in the summer.

H0 : pw � ps = 0; H1 : pw � ps 6= 0:

The di¤erence p̂w � p̂s is distributed approximately as
N(pw � ps; pw(1�pw)nw

+
ps(1�ps)

ns
); under H0 this is



N(0;
p(1�p)
nwns

(nw+ns)); with p = pw = ps: To estimate

p use p̂wnw+p̂sns
nw+ns

= :33�100+:4�120
220 = 0:368 18; then

p(1�p)
nwns

(nw+ns) is estimated by :37�:63
100�120(220) = :0043 ;

test statistic is Z = �:067p
:0043

= �1: 021 7: the critical
value is -1.96 and the null cannot be rejected.

4. A new company o¤ers insurance against theft of home
computers. It is known that every year 1.5% of computer
users have their computers stolen. The mean insured
value of a home computer is 1000$ and the company
decides to set the premiums at 15.50$/year.

(5) (a) In the �rst year 1.5% of the 1000 clients report a
stolen computer. However, the average claim was higher
than expected and as a result the company made a loss.
What may be suspected of the distribution of value of the
stolen computers versus the overall distribution of values
of computers? Assuming that the distribution of values
of stolen computers is normal and that the average claim
was $1050 with estimated standard deviation of $100 test



the hypothesis that the mean value of a stolen computer
is $1000; test at 5% and 1% levels.

The value of a stolen computer is higher on average.

H0 : �s = 1000; H1 : �s > 1000:

t14 =
50p

10000=15
= 1: 936 5; H0 is rejected at 5% level

since the critical value is 1.761, but not at 1% for 2.624.

(3) (b) How would your answer in (a) be a¤ected if nor-
mality could not be assumed?

We would not know the distribution of the test statistic;
the sample size of 15 is not large and the t approximation
may be poor; the results will not be reliable.


